
Approximating sparse semi-nonnegative matrix

factorization for X-Ray covid-19 Image

Classi�cation

Manel Sekma1, Amel Mhamdi2, and Wady Naanaa3

1 Higher Institute of Computer Sciences and Mathematics of Monastir, University of
Monastir, 5000 Monastir, Tunisia.

manel.sekma@isimm.rnu.tn
2 Aivancity School for Technology, Business and Society, Paris-Cachan, France.

mhamdi@aivancity.ai
3 University of Tunis El Manar, 1000 Tunis, Tunisia

wady.naanaa@enit.utm.tn

Abstract. Medical imaging has been intensively used to help the radi-
ologists do the correct diagnosis for the COVID-19 disease. In particu-
lar, chest X-ray imaging is one of the prevalent information sources for
COVID-19 diagnosis. The obtained images can be viewed as numerical
data and processed by non-negative matrix factorization (NMF) algo-
rithms, one of the available numerical data analysis tools.
In this work, we propose a new sparse semi-NMF algorithm that can
classify the patients into COVID-19 and normal patients, based on chest
X-ray images. We show that the huge volume of data resulting from X-
ray images can be signi�cantly reduced without signi�cant loss of clas-
si�cation accuracy. Then, we evaluate our algorithm by carrying out an
experiment on a publicly available dataset, having a known chest X-ray
image bi-partition.
Experimental results demonstrate that the proposed sparse semi-NMF
algorithm can predict COVID-19 patients with high accuracy, compared
to state-of-the-art algorithms.
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1 Introduction

Non-negative matrix factorization (NMF) is one of the most e�ective unsuper-
vised technique in the �eld of numerical data analysis. It consists in approxi-
mating a given non-negative matrix M by a matrix product WST , where both
W and S are required to be non-negative. The goal of such an approximation
is to reduce the dimensionality of the data, since the number of components
comprised in both of the two factors is typically much less than the number
of components of the input matrix. In counter part, it is unlikely to obtain a
perfect equality between the input matrix and its approximation. The quality
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of the approximation, M ≈ WST , is therefore evaluated using some matrix
norm or divergence [4]. In addition to providing low-rank approximation for non
negative data, NMF algorithms have an inherent clustering property. Indeed, a
r-clustering, where r is the factorization rank, of the columns of the input matrix
can be easily deduced, once we have obtained the two factors [3].

Standard NMF can be formulated as follows:

Minimize
W,S

∥M−WST ∥2F subject to W ⪰ 0, S ⪰ 0 (1)

where the matrix norm employed is given by ∥X∥F =
√
trXTX.

However, NMF has many variations for di�erent contexts. In this paper,
we focus on a variation that relaxes the non-negativity constraint on one of
the factors, namely W, resulting in the Semi-NMF variant. Moreover, in order
to guide the factorization to the relevant factors, we resort to an optimisation
criterion that favours sparse matrices for one of the factors, namely S. The
motivation behind favouring sparse factors has been widely discussed [6], and
simplifying the data interpretation is one of the most mentioned arguments.

Nonetheless, even if we consider the more constrained settings of standard
NMF, a unique identi�cation of W and S is not possible, because any one of the
two factors might be permuted and scaled provided that the other factor is trans-
formed accordingly. Indeed, if P is a permutation matrix and Λ a non-singular
positive diagonal matrix then we have WST = (WPΛ)(Λ−1P−1ST ). The ma-
trix pairs (W,S) and (WPΛ,SP−TΛ−1) are, therefore, regarded as equivalent
solutions in the context of NMF.

Since the work by Paatero and Tapper [10], many other were developed [7].
The block principle pivoting algorithm is a fairly simple NMF algorithm which
has, however, proved to be very e�cient [7]. Since then, it forms the core of many
state-of-the-art algorithms. Yet another track explored for the purpose of per-
forming NMF is the one relying on convex geometry. NMF algorithms adopting
this approach are referred to as geometric algorithms [8]. One of these algorithms
is eda, for Extreme Direction Analysis, [9], which proceeds by identifying rele-
vant facets of the data cone. These facets are identi�ed by solving a number of
linear programs using the simplex algorithm.

In the present paper, we focus on the sparse semi-NMF context, which can
be met in various real world situations such as hyper-spectral pictures taken by
a satellite [13].

The proposed sparse semi-NMF algorithm, Reda (for Rectangular eda), is
built up on eda. Recall that this latter algorithm applies only when one of the
factors is a square matrix. However, in the general context of sparse semi-NMF,
each of the two factors may be a rectangular matrix. Hence, the main theoretical
contribution of this article, which consists in transforming sparse semi-NMF
into a particular sparse semi-NMF where one of the factors is a square matrix.
Reda is, therefore, used to help in COVID-19 diagnosis via chest X-Ray images.
We chosen to apply our algorithm to the analysis of these particular images
because existing works concern mainly supervised algorithms [11, 12]. The paper
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is structured as follows: In Section 2, we present the theoretical background of
our algorithm. The proposed sparse semi-NMF algorithm, Reda, is detailed in
Section 3. In Section 4, we report the details of an experiment that demonstrates
the e�ciency of Reda in classifying chest X-ray images into COVID-19 and non
COVID-19 images.

2 Sparse semi-NMF as a linear optimisation problem

This work concerns sparse semi-NMF (SSNMF). This is about �nding a pair
of matrices W,S whose product WST is close to an input matrix M, while
also favouring a sparse matrix for S. As in a lot of research, the quality of the
approximation is measured by the Frobenius norm of the di�erence between
the input matrix and its approximation. In turn, the sparseness of S may be
evaluated via the multichannel sparseness criterion, which is de�ned as follows
µ(S) = (

√
detSTS)/(Πn

j=1∥sj∥1), where sj denotes the jth column of S. It has
been shown, in [9], that 0 ≤ µ(S) ≤ 1 and µ(S)=1 if and only if S is a column
orthonormal matrix. Moreover, since S is a non negative matrix, µ(S)=1 implies
that S contains, at least, n(r − 1) zeros, which corresponds to a rather sparse
matrix.

In order to simplify the expression of µ(S), we enforce the columns of S to sum
to 1. By the equivalence between NMF solutions, this additional constraint does
not entail any loss of generality. Using matrix notation, the latter constraint
can be written as ST1 = 1, where 1 denotes an all-one vector that has the
appropriate size. It follows that µ(S)2 = detSTS.

The studied NMF variation is therefore speci�ed as follows

Minimize
W,S

∥M−WST ∥2F + γ detSTS, subject to S ⪰ 0, ST1 = 1 (2)

where γ ≤ 0. As it can be seen from (2), the objective is a weighted sum of two
terms: an approximation term and a sparseness term. We note that minimizing
the sparseness term is a rather di�cult task, because this is neither a concave
nor a convex function of S. The objective could, however, be approximated by
considering the two terms of the objective separately. Consider therefore the
following Semi-NMF sub-problem, which is obtained from (2) by setting γ = 0:

Minimize
W,S

∥M−WST ∥2F subject to S ⪰ 0, ST1 = 1 (3)

The following theorem4 is the main theoretical contribution of this paper.

Theorem 1. Let (M, r) be a Semi-NMF instance and let S be a non negative

matrix whose columns sum to 1. Then S is an optimal solution for (M, r) if and
only if it is a full column rank matrix whose columns are in the range of V:,1:r,

where V is the right singular factor of M.

4 The proof the this theorem is omitted in this short version of the paper.
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From the above theorem, we can evaluate the quality of the proposed rank r
approximation. beginAmel

Corollary 1. The error of approximating an m-by-n matrix M by a rank r
SNMF M ≈ WST is given by ∥M − WST ∥2F =

∑m
i=r+1 σ

2
i,i, where σi,i, i :

r + 1, . . . ,m are the smallest m− r singular values of M.

In what follows V̄ will designate V:,1:r.
Let c = V̄T1. Theorem 1 suggests that any n-by-r matrix S that veri�es

S = V̄X ⪰ 0 and ST1 = XT c = 1, for some non singular matrix X, yields an
optimal solution for Problem (3). Then solving Problem (3) reduces to solving
the following problem:

Minimize
X

1 subject to V̄X ⪰ 0, XT c = 1 (4)

Problem (4) presents many advantages, with regard to Problem (3). First, the
matrix to be computed, that is X, is r-by-r, which is a relatively small matrix
compared to S in a context where r ≪ n. Moreover, Problem (4) is a satis�ability
problem, that is, it has no objective. Thus, Problem (4) should be much more
easier to solved. This simpli�ed problem will be used as the starting point to
cope with the main problem, namely Problem (2).

Thanks to Theorem 1, we obtain STS = XTX. And since X is a square
matrix, this implies that detSTS = (detX)2. Hence the following mathematical
program

Maximize
X

|detX| subject to V̄X ⪰ 0, XT c = 1 (5)

3 The algorithm

Thanks to Theorem 1, a suboptimal solution for Problem (2) can be obtained
via eda, the sparse semi-NMF algorithm described in [9]. Roughly speaking eda
proceeds by replacing the columns of matrix X, one at a time, by other feasible
vectors, in order to increase the objective |detX|. Thus, eda can be used to
�nd an approximate solution for Problem (2) at the expense of minor changes.
These changes consist in the singular value decomposition and the choice of the
r �rst right singular vectors of M, performed at lines 2 and 3 of Algorithm 1.
The resulting algorithm will be referred to by Reda (for rectangular eda).

Next, we show how Reda can be employed to perform a classi�cation tack.
More precisely, we assume that the goal is classify the columns of the data matrix,
M, into r classes. To this end, we apply Reda to the SSNMF instance de�ned by
(M, r) Once we have obtained an approximate solution, say (W,S), this latter
is used to dispatch the columns of M into the r classes as follows. The class of
each column is determined by measuring the similarity between each column of
the approximate matrix WST , on the one hand, and each column of W on the
other hand. The similarity between each pair of column vectors is evaluated by
the cosine of the angle formed by the two vectors. The resulting cosine matrix,
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which has size n-by-r, is used to determine the class of each of the n columns
of M. This is done by simply determining the position of the maximum in each
row of the cosine matrix.

Algorithm 1: Reda

Data: M, r
Result: W,S
// r must not exceed the rank of M

1 r ← min(r, rank(M))
2 [U,Σ,V]← svd(M)

// V̄ is composed of the first r right singular vectors of M
3 V̄← V(:, 1 : r)

// Initializing matrix X to a non singular matrix

4 f ← 1
5 for j ← 1 to r do
6 X(:, j)← argmaxx |fTx| subject to V̄x ⪰ 0, cTx = 1
7 N← nullspace(X)

8 f ← NT1

9 end
10 stop ← false

11 while not stop do
12 stop ← true

13 max ← 1
14 Y ← X−1

15 for j ← 1 to r do
16 f ← Y(:, j)

17 x∗ ← argmaxx |fTx| subject to V̄x ⪰ 0, cTx = 1

18 if (|fTx∗| ≥ max) then
19 max← |fTx∗|
20 jmax ← j
21 xmax ← x∗

22 stop ← false

23 end

24 end
25 if not stop then X(:, jmax)← xmax

26 end
27 S← V̄X

28 W←MST†

4 Experimental results

We experimentally evaluate the performances of our algorithm by attempting
to partition a dataset of X-ray images into a COVID-19 and a non COVID-
19 subsets. The dataset used for the experiments is obtained from the Kaggle
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Table 1. Comparison between clustering algorithms. Performance values are reported
in the form of accuracy percentages.

Classes Kmeans NMF REDA

NORMAL 94.69 93.24 96,34

COVID-19 84.89 92.18 87,15

Table 2. Average classi�cation accuracy. (Performance values are reported in the form
of Accuracy percentages

Methods Classi�cation Accuracy

K-means 92.08

NMF 92.96

Reda 93,88

repository COVID-19 Radiography Database [2]. It contains 576 X-ray images
of COVID-19 patients and 1583 images for normal people. All the results quoted
in this work were performed using the original dataset.

In a �rst step, we applied an image preprocessing, which consists in resizing
the X-ray radio images in order to obtain 180-by-150 images. This substantially
reduce the input matrix size and boosts computational speed. The obtained
images were subsequently converted into grayscale images, since the luminance
is more important than the colours, for this kind of image.

The second step consists in building the input matrix. Then, the rows of each
preprocessed image are concatenated to form a single column of the input matrix
M. Thus, the number of columns in M correspond to the number of images in
the dataset, and the number of rows correspond to the number of pixels in each
image.

Reda is compared with two existing non supervised clustering algorithms,
namely the NMF algorithm described in [1], which was parametrized for clus-
tering tasks, and the K-means algorithm [5]. This latter algorithm is a distance-
based algorithm that assigns a points into clusters based on the notion of cluster
centres, and it is known as one of the most competitive unsupervised clustering
algorithms.

The results of our experiment is shown in Table 1. We used the COVID-
19 label to designate the row containing the accuracy obtained for the class of
COVID-19 infected patients, and the NORMAL label for the row containing the
accuracy for the not infected patients.

As it can be noticed from Table 1, for all algorithms, the NORMAL class is
identi�ed with more accuracy than the COVID-19 class. And the highest accu-
racy is obtained by Reda (96,34%). In contrast, for the COVID-19 class, the
state-of-the-art NMF obtained the highest accuracy. Finally, the overall accu-
racy (see Table 2) gave the advantage to Reda, which obtained highest global
accuracy, with 93,88%.
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5 Conclusion

In this paper, we have proposed a sparse semi-NMF algorithm, Reda, which
has been built upon an existing geometric sparse semi-NMF algorithm. When
applied to chest X-ray images, Reda signi�cantly reduces the huge volume of
data, issued from these images, without loss of classi�cation accuracy.

The experimental results showed that the classi�cation accuracy of the pro-
posed algorithm is very competitive with dedicated state-of-the-art algorithms.
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